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The theological equations of state of dilute suspensions of rigid axisymmetric 
particles lacking a central symmetry in a Newtonian dispersion medium are de- 
rived. A free-through flow asymmetric, triaxial dumbbell is used as the hydro- 
dynamic model of dispersed particles. The article is concerned with the effect 
of the asymmetry of dispersed particles and their percentage elongation on their 
angular velocity and the shape and dimensions oftheir migration trajectories 
relative to the dispersion medium and on the effective suspension viscosity in 
a simple shear flow. 

Many basic processes in a living cell (fission, transfer of characteristics, and mut- 
ability) occur at the molecular level. Thus, the problems of the structure and function of 
molecules of biologically active polymers - proteins and nucleic acids - have acquired funda- 
mental importance in modern natural science. 

Adequate hydrodynamic models of macromolecules are now very important in investigating 
experimentally the structure and characteristics of macromolecules in solutions by studying 
the viscous flow of macromolecule solutions and their translational and rotational friction 
during diffusion and sedimentation and phenomena of double refraction in a laminar flow. 

A characteristic of the most important biological polymers - proteins and nucleic 
acids - is the constancy of rigid conformations of their molecular chains. Thus, the macro- 
molecules of native proteins, for instance, trypsin, egg albumen, and human serous protein, 
in both globular and spiralized states, behave as rigid particles, whose shape can be simu- 
lated by the hydrodynamic model of an ellipsoid of rotation [i]. A spheric model is used [i] 
in investigating the structure and form of the bean mosaic virus - a particle which has a 
permolecular structure. These hydrodynamic models, which have been introduced in [2-4], can 
be used only in those cases where the macromolecules or particles possessing a permolecular 
structure are characterized either by central spherical asymmetry or axial symmetry with a 
symmetry center. 

In many cases, the actual shape of protein macromolecules characterized by a rigid con- 
formation is far from being spherical or ellipsoidal. For instance, the molecules of myo- 
globin - muscle protein - are asymmetric particles [I]. The lack of an adequate hydrodynamic 
model of asymmetric macromolecules makes it impossible to use the above mentioned experimen- 
tal methods for investigating their shape and structure. We propose here a hydrodynamic 
model of rigid axisymmetric macromolecules or particles with a permolecular structure lacking 
a central symmetry. 

The theorem that any axisymmetric dispersed particle lacking a central symmetry (hence- 
forth, asymmetric particle, for brevity) must rotate like some equivalent ellipsoid of rota- 
tion in a simple shear flow of a dispersion medium has been proved in [5]. In spite of this, 
neither an ellipsoid of rotation nor a symmetric triaxial dumbbell, which is hydrodynami- 
cally equivalent to the former [6], can be used as the hydrodynamic model of asymmetric dis- 
persed particles. This is due to the fact that, as has been shown in [7, 8], such particles 
must experience, besides rotational motion, also translational migration relative to the 
dispersion medium in a simple shear flow. For the hydrodynamic model of dispersed particles, 
an ovoid - an egg-shaped body - was used as a simple asymmetric non-through flow model of 
such particles. Due to the complexity of the ovoid surface, the problem of hydrodynamic 
interaction between this model and the liquid ambient was solved [7, 8]. Only for Brether- 
ton~s ovoid was the cause of the smallness of its migration trajectory. The extent of the 
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Fig. i. Hydrodynamic models of symmetric 
and asymmetric dispersed particles: non- 
through flow models - ellipsoid of rota- 
tion and ovoid; free-through flow models - 
symmetric and asymmetric triaxial dt~nbbells. 

orbit in the direction of the velocity vector in a simple shear flow amounted to only 5% of 
the radius of the sphere, the deformation of which produces the ovoid [8]. 

For investigating the motion of particles with an arbitrary or even considerable, 
asymmetry, the migration orbits of which can be measured experimentally, it is suggested 
to use, instead of an ovoid, a free-through flow model - an asymmetric, triaxial, dumbbell 
(henceforth, asymmetric dumbbell, for brevity) (Fig. i). By analogy with [6], where a tri- 
axial dumbbell was used to stimulate axisymmetric dispersed particles possessing a central 
symmetry, the principal axis L I of the dumbbell is equal to the length of the symmetry 
axis of the ovoid, while the other two, L 2 and L 3, are equal to each other and to the dia- 
meter of its largest transverse cross section (Fig. I). The L 2 and L 3 axes are perpendicular 
to each other and to the L I axis, which they subdivide into two unequal parts, L11 and 
L12 (L11 > L12). The value of q = (LII-LI2)/L I is used as the measure of asymmetry of the 
triaxial dumbbell. 

As in [6], it is assumed that point centers of hydrodynamic interaction between the 
model and the liquid ambient are located at the ends of the axes. This means that, if the 
dispersion medium flows around the end of the dumbbell axis at the velocity Ui, it is acted 
upon by the force ~U i on the part of the liquid. The dumbbell axes do not offer hydrodynamic 
resistance. 

In deriving the equations of motion of an asymmetric dumbbell, it is assumed that the 
asymmetric particle represented by the above model has, on the one hand, such dimensions that 
the dispersion medium interacts with it as with a hydrodynamic body, while, on the other, the 
dispersed particle must be sufficiently small for the velocity of the dispersion medium in 
its neighborhood to be a homogeneous function of the coordinates, i.e., V~=~ik~+dikrh The 
radius vector r k determines the position of a point in the vicinity of the particle in the 
(x', 9', z') coordinate system bound to it, whose origin is at the reaction center O' of the 
asymmetric dumbbell (Fig. I). The reaction center of the asymmetric dumbbell lies on the L I 
axis, which is due to the axial symmetry of the model under consideration. According to [9], 
its position at the axis is determined by setting equal to zero the moment of hydrodynamic 
forces acting on the asymmetric dumbbell, which is hinged at its reaction center and is 
located in the plane-parallel flow of the dispersion medium. It is found that the reaction 
center O' lies at the distance qi= (LII--L12!/4 from the point of intersection between the dumb- 
bell axes. The vector of hydrodynamic forces F i acting on the asymmetric dumbbell in an 
arbitrary velocity field v i of the dispersion medium is defined as the sum of the forces 
acting at the ends of its axes: 

~ F~ = ~L~ {--~ [~ - -  (di, -l- ~ n,] --6vo~} . (i) 
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TABLE I. Relative Transverse (i~=I~/L,) and Longitudinal 
(Ty=ly/ti) Dimensions of Migration Trajectories of Asymmetric 
Triaxial Dumbbells in a Simple Shear Flew 

q 

p=l 
p=2 
p=3 
p=4 
p=5 
p=6 
p=7 
p=8 
p=9 
p=lO 
p=12 
p=15 
p=t8 
p:20 

0,1 

0 , 0 1 6 7  

3,0166 
3,0150 
3,0180 
9,0211 
0,0239 
9,0264 
0,0286 
0,0306 
0,0324 
0,0340 
0,0369 
0,0404 
0,0434 
0,0451 

0,2 

0,0333 

0,0330 
0,0302 
0,0362 
0,0425 
Q,0481 
0,0531 
0,0576 
0,0615 
0,0651 
0,0684 
0,0741 
0,0812 
0,0871 
0,0905 

0 ,3  �9 

0 , 0 5 0 0  

0,0491 
0,0455 
0,0547 
0,0643 
0,0728 
0,0804 
0,0871 
0,0930 
0,0984 
0,t033 
0,1119 
0,1225 
0,1314 
0,1365 

0 ,5  

0 ,P833  

0,0795 
0,0770 
0,0936 
0,1101 
0,1246 
0,1374 
0,1486 
0,t587 
0,1677 
0,1390 
0,1902 
0,2081 
0,2229 
0,2315 

0 , 7  

0 , 1 1 6 7  

0,1078 
0,1106 
0,1358 
0,1598 
0,1807 
0,1988 
0,2148 
0,2290 
0,2417 
0,1759 
0,2735 
0,2986 
0,3193 
0,3314 

0 , 9  

0 , 1 5 0 0  

0,1345 
0,1470 
0,1821 
0,2141 
0,2417 
0,2655 
0,2863 
0,3047 
0,3213 
0,2533 
0,3624 
0,3948 
0,4216 
0,4371 

1,0  

0 , I 0 6 7  

0,1477 
0,1664 
0,2069 
0,2432 
0,2742 
0,3009 
0,3241 
0,3447 
0,3632 
0,3360 
0,4090 
0,4451 
0,4749 
0,4921 
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Fig. 2. Trajectories of translational 
migration of asymmetric dumbbells in a 
simple shear flow of a dispersion med- 
ium {~=x/LI, O=y/L,) : i), 2), and 3) at 
q = 0.75; p = i, 5, and 10, respective- 
ly; 4, 5), and 6) at p = i0; q = 0.25, 
0.5, and 0.75, respectively. 

It is assumed that, besides the hydrodynamic forces, also external forces - electric 
and Brownian forces - can act on a suspended asymmetric dumbbell; the moment M i about the 
particle's reaction center is determined by the relationship 

Mi = -~- 12 + ~ -  q~ n; [(Gz + o~r) m - -  n~l + 

�9 } q- L~ j [(dhz 4- o.~z) m~--m~] + L~tei [(d~ + r tez - -  k~,] - -  qLlnpok q- M* .  

(2) 

If the moment of inertia of a dispersed particle is neglected, the equations of motion 
of the asyrr~etric dumbbell under the action of hydrodynamic and external forces assume the 
form F~+F~=0; ]Wi=01and, with an allowance for (i), (2), and the condition niM~=0 are 

written as follows: 
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OOi ~ 

1 , o~ F* F~ntni), (3) 

2 
pc ~ 1 

n M* - ~  ~ ~' (4 )  

where 

d + l  T q 

1 L 2 1 Liq~,. 

For F~=0 and M~=O , Eq. (3) characterizing the rotation of an asymmetric dumbbell 
relative to the reaction center O' coincides with the equation of rotational motion of the 
equivalent ellipsoid of rotation whose axis ratio is 

I 

p~----p (1 +--~q~) (5) 

in an arbitrary gradient flow of a Newtonian liquid [i0]. This result not only agrees with 
the inferences of the theorem concerning the rotation of an arbitrary asymmetric particle in 
a simple shear flow of a dispersion medium, which has been proved in [5], but also generaliz- 
es them to encompass an arbitrary flow in the case of rotation of an asymmetric dumbbell. 

According to (5), Pe > P for 0 < q 5 i. The difference between the actual axis ratio 
p=LJL~ of an asymmetric dumbbell and the axis ratio Pe of an equivalent ellipsoid of rota- 
tion can amount to more than 28% for large values of q ! I. This is what primarily hinders 
the use of the equivalent ellipsoid as a hydrodynamic model of asymmetric macromolecules in 
determining their dimensions, for instance, in experiments on double refraction in the lami- 
nar flow of a dilute solution of such macromolecules. 

According to (3) and (5), the rotation of a symmetric, triaxial dumbbell for q = 0 
coincides with the rotational motion of an ellipsoid of rotation that is equiaxial with the 
former, i.e., an ellipsoid of rotation with the axis ratio Pp = LI/L 2 (Fig. I). According to 
(4), there is no dumbbell migration relative to the dispersion medium: Voi ~ 0. 

It follows from (3) and (4) that the orientation vector n i coinciding with the principal 
axis L I of the particle is sufficient for describing the motion of asymmetric particles in 
the gradient flow of a dispersion medium. Therefore, the structural - phenomenological ap- 
proach, utilized, for instance, in" [6, i0], is used for deriving the theological equation of 
state for the stress in a dilute suspension of asymmetric particles. 

According to [6], the stress tensor in such a suspension should be sought in the form of 
the phenomenological relationship 

+ aad~j + a~d~h ( nhn~ ) + ~d~k ( n~ni > + r ( 6 )  

The averaging in (6) is realized by means of the distribution function of the axes of dis- 
persed particles with respect to angular positions, which constitutes the solution of the 
equation 

OF 0 (Fnl) 
at  + On~ = O. (7) 
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Comparing, as in [6], the expressions for the energy dissipation rate per unit volume 
of suspension, calculated on the basis of the structural and the phenomenological theories, 
we obtain 

a l  = a2  = 0 ,  a~ = 2~L,~, a6 -I- a7 = - - - ( a ~  + as ) ,  

2 o 1 2 a~ - i -a5 ---- ~/6  (5LI l - t -SL72 -]- 2LnLI~ -~ 2L2). 
( 8 )  

By substituting relationship (3) in (6), assuming that the external moment M* i is due 
only to Brownian forces, we obtain the following with an allowance for (8): 

Ti~ = Ti~ + 2/zodij + g l  ( ninj > + 

+ F~_dh,~ < nhnmndzi > + 2~3 (dih < nhnj > + ds~ < nani > ). 
(9) 

Here, 

~to = - ~  No<o, ~, = 3D~No~,  ~2 = N ~ ? ,  

~ = - + N o ~ + ;  + = ~L~. 

In order to determine by means of (3) and (4) the effect of asymmetry of a particle on 
its angular velocity and translational migration relative to the dispersion medium for F~=0 
and M~=0 , we consider the motion of the asymmetric dumbbell in a simple shear flow: 

v~  = O, Vv = K x ,  v~ = 0; K - - c o n s t .  ( i o )  

We use the (x, y, z) laboratory coordinate system and consider the case where the vector n i 
characterizing the orientation of the asymmetric dumbbell in this system has the coordinates 

nx=COS~, nv=sin ~ and n z = O. Equations (3) and (4) then assume the following form: 

% = (1 + [, cos 29), 

0Ox ~ Xt -- 2 - -  K sin ~ ~p (I --}- p~ c tg  z 9), 

- -  Kcosa~(1 + p ~  tg= 9). 

(ii) 

(12) 

(13) 

According to (ii), the asymmetry of the triaxial dumbbell causes its maximum angular 
velocity to increase at ~=0 and 1800C , and its minimum angular velocity to diminish at 

= 90 and 2700Cin comparison with the angular velocity of an equiaxial symmetric dumbbell 

or an ellipsoid of rotation. 

The relationship between the angular velocity of the asymmetric dumbbell and its angular 
position, in turn, causes the kinematic orientation of the dumbbell's principal axis to as- 
sume the direction of the velocity vector. The nonuniform distribution of the principal axes 
of the dumbbells with respect to the angle ~ is characterized, as in [ii], by the distribu- 
tion function 

me 
P (9) = 2a  (p~ cos~ q~ + sin= q0 " 

The asymmetry of the triaxial dumbbell makes the maximum of the P(~) function larger at ~ = 
90 and 2700C, i.e., it reinforces the predominant orientation of the principal axes of 
triaxial dumbbells in the direction of the flow in comparison with equiaxial, symmetric dumb- 
bells or ellipsoids of rotation. 

The solution of Eq. (Ii), which determines the angular velocity of an asymmetric dumb- 
bell relative to the reaction center for the initial condition ~ = 0 at t = 0, makes it pos- 
sible to determine the rotation period of the asymmetric dumbbell: 
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Fig. 3. Increment of the viscosity of a dilute suspension of particles 
simulated by triaxial dumbbells at q = 0 (solid curves) and of ellipsoi- 
dal particles (dashed curves) as a function of the dimensionless shear 
velocity K/D r . i), 2), and 3) at p = 5, I0, and 15, respectively. 

Fig. 4. Increment of the viscosity of a dilute suspension of asymmetric 
dumbbells as a function of the dimensionless shear velocity K/D r. I), 
2), and 3) at p = 5; q = 0, 0.5, and 0.9, respectively; 4), 5), and 6) 
at p = I0; q = 0, 0.5, and 0.9, respectively; 7), 8) and 9) at p = 15; 
q = 0, 0.5, and 0.9, respectively. 

K P ~ +  " (14) 
Pe 

Since Pe > P for q * 0, the asymmetry of the triaxial dumbbell, according to (14), causes 
its rotation period to increase in comparison with that of an equiaxial symmetric dumbbell 
or an ellipsoid of rotation. 

Solving Eqs. (12) and (13) for the initial conditions x = y = 0 at ~=~0 by means of 

the substitution 2,=x~Te, #~=y~t and using Eq. (ii) for ~t , we obtain the parametric equa- 

tions of the trajectories of translational migration of an asymmetric dumbbell in the simple 
shear flow (i0) of the dispersion medium: 

x = - ~ -  ( c o s  % - COS (p), (15) 

~ ( 1 V p2@l t n(p~%_-V~p~ 1 sin~o)(p _] /p~_ls in%))  
Y=-~- sin % -- sin (o -+ -~Pe ~ (p~q--~pe 2 " 1 sin%)(p~---I/~p~2--1 sin~) ' (16) 
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where 0.~<~.2~ According to (15) and (16), the migration trajectories in the case F@ = 
1 

0, M@ = 0, which is contemplated here, have two mutually perpendicular symmetry axes, parallel 
i 

to the Ox and Oy axes, while they are indePendent of the shear of flow (i0). The trajectory 
shape is not affected by the initial angular position ~0 of the asymmetric dumbbell either. 
Changes in 90 only cause variation in the trajectory position relative to the coordinate axes. 
The shape and dimensions of the trajectory are fully determined by the parameters p, q, and 
LI, which characterize an asymmetric dumbbell (Fig. 2). Table 1 provides the relative dimen- 
sions of the migration trajectories of asymmetric dumbbells, obtained by means of expressions 
(15) and (16). 

We did not compare the results obtained with experimental data or solutions of problems 
of motion of actual asymmetric particles (macromolecules), as there were not available. Com- 
parison with the approximate solution of the problem involving the motion of Bretherton's 
Ovoid (q = 0.i) in a simple shear flow [8] indicates that there is qualitative agreement be- 
tween the rotational and the migratory motions of an ovoid and those of an asymmetric, tri- 
axial dumbbell (p = i; q = 0.I). 

If the motion of actual dispersed asymmetric particles can be observed visually, the 
parameters p, q, and L I necessary for simulating them can be determined by using relation- 
ships (14)-(16) and experimental data on the longitudinal and transverse dimensions of migra- 
tion trajectories and the rotation period of these particles in flow (i0). If visualization of 
the motion of dispersed asymmetric particles (macromolecules) is impossible, then, the values 
of p, q, and L I should be determined by means of experiments on the viscous flow of dilute sus- 
pensions of such particles (macromolecules) in a laminar flow [i], introducing in the experi- 
mental methodology suitable changes which would allow us to take into account the asymmetry 
of dispersed particles. 

In order to determine by means of (7) and (9) the effect of the asymmetry of dispersed 
particles on the rheological behavior of a dilute suspension, we consider the shear flow (I0). 
For the effective viscosity of the suspension Pelf, we obtain the relationship 

K - I~ -I- ~o q- < sin 2qo sin~0 > q- ~ 1~ ( sin 2 2q~ sin ~ 0 > --}- ~*a < sin~ 0 > �9 ( 17 ) 

For the averaging in (17), we use the distribution function obtained in [12] in the form of 
a spherical harmonics series as the solution of Eq. (7) for the flow (i0). 

In the absence of experimental or theoretical data on suspensions of asymmetric parti- 
cles, we compared the viscosity increments w = (~eff--~)/~V for suspensions of ellipsoidal 
particles and particles simulated by symmetric (q = 0) triaxial dumbbells with the same axis 
ratio. In connection with the fact that a free-through flow particle does not possess vol- 
ume, the latter is ascribed to it on the basis of agreement between the effective viscosities 
of the suspensions in question at the zero shear velocity. 

This comparison indicates that the triaxial dumbbell model is a good approximation of 
the corresponding non-through flow particles (Fig. 3). 

It was found that greater asymmetry of dispersed particles produces a higher suspension 
viscosity, especially at low shear velocities and/or large particle elongations (Fig. 4). 
The effect of elongation of asymmetric particles on the effective viscosity of the suspen- 
sion is similar to that in the case of a suspension of ellipsoidal particles - greater elonga- 
tion leads to a higher suspension viscosity. 

Conclusions. An asymmetric, triaxial dumbbell in a gradient flow displays the behavior 
characteristic of axisymmetric dispersed particles without a central symmetry. This suggests 
that we can use it as the hydrodynamic model of such particles and utilize its equations of 
motion (3) and (4) in writing the rheological equation of state of dilute suspensions (9). 
The asymmetry of dispersed particles leads to an increase in the effective viscosity of such 
suspensions in a simple shear flow. 

NOTATION 

LI, L2, and L s, axes of an asymmetric triaxial dumbbell; q, measure of asymmetry of a 
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triaxial dumbbell; U i flow velocity of the dispersion medium around the end of the dumbbell; 
$, coefficient of translational friction of the dumbbell end in the dispersion medium; vi, 
velocity of the dispersion medium; ~ik, tensor of the velocity vortex; dik , strain rate ten- 
sor; rk, radius vector of a point in the neighborhood of the dispersed particle; (x', y', z') 
coordinate system bound to the dispersed particle, the origin of which is at the reaction 
center O'; Fi, vector of the hydrodynamic forces acting on an asymm, etric dumbbell; ni, mi, 
k i, basis vectors of the (x', y', z'); coordinate system; hi, mi, ki, time derivatives; Voi , 
migration velocity of the reaction center of an asymmetric dumbbell relative to the disper- 
sion medium; M i and Mi*, moment of forces and moment of external forces Fi* acting on the 
asymmetric dumbbell, respectively; gijk , Levi-Civita tensor; p, axis ratio of an asymmetric 
particle characterizing its elongation; Pe, axis ratio of the ellipsoid of rotation equi- 
valent to the asymmetric dumbbell; Tij, stress tensor in a dilute suspension of asymmetric 
particles; Tij , stress tensor in the dispersion medium in the absence of dispersed particles; 
N o , number of dispersed particles per unit volume of suspension; a i (i = i, ..., 7), and 
Pi (i = 0, i, 2, 3), rheological constants; <>, symbol of averaging by means of the distribu- 
tion function F; m, coefficient of rotary friction of an asymmetric particle relative to the 
L I axis; Dr, coefficient of rotary Brownian diffusion of asymmetric dispersed particles; 

v x, Vy, and Vz, coordinates of the v i vector; K, shear velocity in a simple shear flow; 
(x, y, z), laboratory coordinate system; 9, angle between the Ox axis and the n i vector; 
~,.~,,~ derivatives with respect to time; Vox and Voy, coordinates of the Voi vector in 

the (x, y, z), coordinate system; ~0 , initial angular position of the asymmetric dumbbell; 
P(~), distribution function of dumbbell axes with respect to the angle ~ without an allow- 

ance for the rotary Brownian motion of the dumbbells; T, rotation period of an asymmetric 
dumbbell; ~eff, effective viscosity of the dilute suspension of asymmetric particles in a 
simple shear flow; p, viscosity of the dispersion medium; ~ and ~, azimuthal and latitude 
angles in a spherical coordinate system that determine the angular position of a dispersed 
particle in space. 
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